Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

Identifieur interne : 001967 ( Main/Exploration ); précédent : 001966; suivant : 001968

Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.

Auteurs : Gea Guerriero [Suède] ; Mariano Avino ; Qi Zhou ; Johanna Fugelstad ; Pierre-Henri Clergeot ; Vincent Bulone

Source :

RBID : pubmed:20865175

Descripteurs français

English descriptors

Abstract

Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.

DOI: 10.1371/journal.ppat.1001070
PubMed: 20865175
PubMed Central: PMC2928807


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.</title>
<author>
<name sortKey="Guerriero, Gea" sort="Guerriero, Gea" uniqKey="Guerriero G" first="Gea" last="Guerriero">Gea Guerriero</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avino, Mariano" sort="Avino, Mariano" uniqKey="Avino M" first="Mariano" last="Avino">Mariano Avino</name>
</author>
<author>
<name sortKey="Zhou, Qi" sort="Zhou, Qi" uniqKey="Zhou Q" first="Qi" last="Zhou">Qi Zhou</name>
</author>
<author>
<name sortKey="Fugelstad, Johanna" sort="Fugelstad, Johanna" uniqKey="Fugelstad J" first="Johanna" last="Fugelstad">Johanna Fugelstad</name>
</author>
<author>
<name sortKey="Clergeot, Pierre Henri" sort="Clergeot, Pierre Henri" uniqKey="Clergeot P" first="Pierre-Henri" last="Clergeot">Pierre-Henri Clergeot</name>
</author>
<author>
<name sortKey="Bulone, Vincent" sort="Bulone, Vincent" uniqKey="Bulone V" first="Vincent" last="Bulone">Vincent Bulone</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20865175</idno>
<idno type="pmid">20865175</idno>
<idno type="doi">10.1371/journal.ppat.1001070</idno>
<idno type="pmc">PMC2928807</idno>
<idno type="wicri:Area/Main/Corpus">001833</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001833</idno>
<idno type="wicri:Area/Main/Curation">001833</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001833</idno>
<idno type="wicri:Area/Main/Exploration">001833</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.</title>
<author>
<name sortKey="Guerriero, Gea" sort="Guerriero, Gea" uniqKey="Guerriero G" first="Gea" last="Guerriero">Gea Guerriero</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm</wicri:regionArea>
<placeName>
<settlement type="city">Stockholm</settlement>
<region nuts="2">Svealand</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Avino, Mariano" sort="Avino, Mariano" uniqKey="Avino M" first="Mariano" last="Avino">Mariano Avino</name>
</author>
<author>
<name sortKey="Zhou, Qi" sort="Zhou, Qi" uniqKey="Zhou Q" first="Qi" last="Zhou">Qi Zhou</name>
</author>
<author>
<name sortKey="Fugelstad, Johanna" sort="Fugelstad, Johanna" uniqKey="Fugelstad J" first="Johanna" last="Fugelstad">Johanna Fugelstad</name>
</author>
<author>
<name sortKey="Clergeot, Pierre Henri" sort="Clergeot, Pierre Henri" uniqKey="Clergeot P" first="Pierre-Henri" last="Clergeot">Pierre-Henri Clergeot</name>
</author>
<author>
<name sortKey="Bulone, Vincent" sort="Bulone, Vincent" uniqKey="Bulone V" first="Vincent" last="Bulone">Vincent Bulone</name>
</author>
</analytic>
<series>
<title level="j">PLoS pathogens</title>
<idno type="eISSN">1553-7374</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Aminoglycosides (pharmacology)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Blotting, Southern (MeSH)</term>
<term>Chitin Synthase (genetics)</term>
<term>Chitin Synthase (metabolism)</term>
<term>Microscopy, Electron (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Reverse Transcriptase Polymerase Chain Reaction (MeSH)</term>
<term>Saprolegnia (enzymology)</term>
<term>Saprolegnia (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aminosides (pharmacologie)</term>
<term>Antifongiques (pharmacologie)</term>
<term>Chitine synthase (génétique)</term>
<term>Chitine synthase (métabolisme)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Microscopie électronique (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>RT-PCR (MeSH)</term>
<term>Saprolegnia (enzymologie)</term>
<term>Saprolegnia (génétique)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Technique de Southern (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Chitin Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chitin Synthase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Aminoglycosides</term>
<term>Antifungal Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saprolegnia</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saprolegnia</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saprolegnia</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chitine synthase</term>
<term>Saprolegnia</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chitine synthase</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Aminosides</term>
<term>Antifongiques</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Blotting, Southern</term>
<term>Microscopy, Electron</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Reverse Transcriptase Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Microscopie électronique</term>
<term>Phylogenèse</term>
<term>RT-PCR</term>
<term>Séquence d'acides aminés</term>
<term>Technique de Southern</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20865175</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>12</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1553-7374</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>8</Issue>
<PubDate>
<Year>2010</Year>
<Month>Aug</Month>
<Day>26</Day>
</PubDate>
</JournalIssue>
<Title>PLoS pathogens</Title>
<ISOAbbreviation>PLoS Pathog</ISOAbbreviation>
</Journal>
<ArticleTitle>Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.</ArticleTitle>
<Pagination>
<MedlinePgn>e1001070</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.ppat.1001070</ELocationID>
<Abstract>
<AbstractText>Oomycetes represent some of the most devastating plant and animal pathogens. Typical examples are Phytophthora infestans, which causes potato and tomato late blight, and Saprolegnia parasitica, responsible for fish diseases. Despite the economical and environmental importance of oomycete diseases, their control is difficult, particularly in the aquaculture industry. Carbohydrate synthases are vital for hyphal growth and represent interesting targets for tackling the pathogens. The existence of 2 different chitin synthase genes (SmChs1 and SmChs2) in Saprolegnia monoica was demonstrated using bioinformatics and molecular biology approaches. The function of SmCHS2 was unequivocally demonstrated by showing its catalytic activity in vitro after expression in Pichia pastoris. The recombinant SmCHS1 protein did not exhibit any activity in vitro, suggesting that it requires other partners or effectors to be active, or that it is involved in a different process than chitin biosynthesis. Both proteins contained N-terminal Microtubule Interacting and Trafficking domains, which have never been reported in any other known carbohydrate synthases. These domains are involved in protein recycling by endocytosis. Enzyme kinetics revealed that Saprolegnia chitin synthases are competitively inhibited by nikkomycin Z and quantitative PCR showed that their expression is higher in presence of the inhibitor. The use of nikkomycin Z combined with microscopy showed that chitin synthases are active essentially at the hyphal tips, which burst in the presence of the inhibitor, leading to cell death. S. parasitica was more sensitive to nikkomycin Z than S. monoica. In conclusion, chitin synthases with species-specific characteristics are involved in tip growth in Saprolegnia species and chitin is vital for the micro-organisms despite its very low abundance in the cell walls. Chitin is most likely synthesized transiently at the apex of the cells before cellulose, the major cell wall component in oomycetes. Our results provide important fundamental information on cell wall biogenesis in economically important species, and demonstrate the potential of targeting oomycete chitin synthases for disease control.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Guerriero</LastName>
<ForeName>Gea</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Avino</LastName>
<ForeName>Mariano</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Qi</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fugelstad</LastName>
<ForeName>Johanna</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Clergeot</LastName>
<ForeName>Pierre-Henri</ForeName>
<Initials>PH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bulone</LastName>
<ForeName>Vincent</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>26</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS Pathog</MedlineTA>
<NlmUniqueID>101238921</NlmUniqueID>
<ISSNLinking>1553-7366</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000617">Aminoglycosides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9Z22C3QQCJ</RegistryNumber>
<NameOfSubstance UI="C011952">nikkomycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.16</RegistryNumber>
<NameOfSubstance UI="D002687">Chitin Synthase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000617" MajorTopicYN="N">Aminoglycosides</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015139" MajorTopicYN="N">Blotting, Southern</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002687" MajorTopicYN="N">Chitin Synthase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008854" MajorTopicYN="N">Microscopy, Electron</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020133" MajorTopicYN="N">Reverse Transcriptase Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D044762" MajorTopicYN="N">Saprolegnia</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>03</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>07</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20865175</ArticleId>
<ArticleId IdType="doi">10.1371/journal.ppat.1001070</ArticleId>
<ArticleId IdType="pmc">PMC2928807</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):720-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Jan 19;305(3):567-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11152613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1997 Jun;143 ( Pt 6):2009-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Microbiol. 2008 Jan;16(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 15;417(2):547-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18823281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2001 May;18(5):691-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11319253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2002 Mar-Apr;94(2):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1982 May 5;157(1):105-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7108955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Sep;176(18):5857-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8083179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1980 Oct 10;8(19):4321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7433111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1968;22:87-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4879523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2002 Jan;1(4):247-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Feb;11(2):579-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Jul;46(1):13-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346335</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2002 Mar 5;208(2):169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11959432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1997 Sep 15;326 ( Pt 3):929-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9334165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1975 Nov 5;98(3):503-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1195397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2004 Jun;3(3):675-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15189988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2009 Oct;46(10):759-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19589393</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Sep 27;102(39):13813-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16174732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biomol Struct. 1998;27:503-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9646876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Nov;7(11):1980-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18806214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2003 Apr;81(4):437-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2004 Jun;271(11):2153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15153106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Apr;75(7):1938-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19201970</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycologia. 2002 Mar-Apr;94(2):267-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21156496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2002 Jun;32(6):1372-4, 1376, 1378-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12074169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2001 Aug;17(8):754-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11524383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1978 Jun 25;253(12):4419-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">350873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2009 Mar 4;583(5):872-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Fish Dis. 2005 Aug;28(8):445-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Mikrobiol. 1970;72(2):111-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5469570</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
<region>
<li>Svealand</li>
</region>
<settlement>
<li>Stockholm</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Avino, Mariano" sort="Avino, Mariano" uniqKey="Avino M" first="Mariano" last="Avino">Mariano Avino</name>
<name sortKey="Bulone, Vincent" sort="Bulone, Vincent" uniqKey="Bulone V" first="Vincent" last="Bulone">Vincent Bulone</name>
<name sortKey="Clergeot, Pierre Henri" sort="Clergeot, Pierre Henri" uniqKey="Clergeot P" first="Pierre-Henri" last="Clergeot">Pierre-Henri Clergeot</name>
<name sortKey="Fugelstad, Johanna" sort="Fugelstad, Johanna" uniqKey="Fugelstad J" first="Johanna" last="Fugelstad">Johanna Fugelstad</name>
<name sortKey="Zhou, Qi" sort="Zhou, Qi" uniqKey="Zhou Q" first="Qi" last="Zhou">Qi Zhou</name>
</noCountry>
<country name="Suède">
<region name="Svealand">
<name sortKey="Guerriero, Gea" sort="Guerriero, Gea" uniqKey="Guerriero G" first="Gea" last="Guerriero">Gea Guerriero</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001967 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001967 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20865175
   |texte=   Chitin synthases from Saprolegnia are involved in tip growth and represent a potential target for anti-oomycete drugs.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20865175" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024